JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year II Semester Examinations, November/December - 2020

ENGINEERING MECHANICS
(Common to CE, ME, MCT, MMT, AE, MIE, PTM)
Time: 2 hours
Max. Marks: 75

Answer any five questions
 All questions carry equal marks

1. Two spheres, A and B , are resting in a smooth through as shown in figure 1. Draw the free body diagrams of A and B showing all the forces acting on them, both in magnitude and direction. Radius of spheres A and B are 250 mm and 200 mm , respectively. [15]

Figure: 1
2.a) State the varignon's theorem for system of forces in plane.
b) A circular roller of weight 1000 N and radius 20 cm hangs by a tie rod $\mathrm{AB}=40 \mathrm{~cm}$ and rests against a smooth yortical wall at C as shown in figure 2 . Determine the tension in the rod and reaction a point C .
[5+10]

3. Two blocks $\mathrm{A}=100 \mathrm{~N}$ and $\mathrm{B}=\mathrm{W}$ are connected by a rod at their ends by frictionless hinges as shown in figure 3. Find the weight of block B (W) required for limiting equilibrium of the system if coefficient of friction at all sliding surfaces is 0.3.

Figure: 3
4. Three plates ABC and BCDE and DEF are welded together as shown in figure 4. Circle of diameter 1.5 m is cut from the composite plate. Determine the centroid of the remaining area.

Figure: 4
5. For the given shaded area shown in figure 5. Find MI about the reference axes i.e., Ox and Oy axis. All dimensions are in mm .

Figure: 5
6. Determine the mass moment of inertia of a quarter circular rod about x, y and z -axis as shown in figure 6.

Figure: 6
7. A mass mkg is acted on by a constant force of P Newton for t seconds. In this interval of time, it moves a distance x meter and acquires a velocity $\mathrm{V} \mathrm{m} / \mathrm{s}$. Show that, $\mathrm{x}=\mathrm{Pt}^{2} / 2 \mathrm{~m}=\mathrm{mV}^{2} / 2 \mathrm{P}$.
8. A wagon weighing 500 kN starts from rest, runs 30 m down one percent grade and strikes the bumper post. If the rolling resistance of the track is $5 \mathrm{~N} / \mathrm{kN}$, find the velocity of the wagon when it strikes the post. If the bumper spring which compresses 1 mm for every 15 kN , determine by how much the spring will be compressed.

